
 ISSN NO: 9726-001X

Volume 8 Issue 01 2020

23

Restoring a Carry-Look-Ahead Adder with Hot Standby

Topology on Your Own

Mr. D. Satyaraj, Mrs. D. Chitra, Mr. P. A. Prassath, Dr. L. Vigneash

Associate Professor 4, Assistant Professor 1,2,3

Department of ECE,

dsatyaraj@actechnology.in, chitra@actechnology.in, paprassath@actechnology.in,

dr.vigneashl@actechnology.in

Arjun College of Technology, Thamaraikulam, Coimbatore-Pollachi Highway, Coimbatore,

Tamilnadu-642 120

ABSTRACT

A distributed fault detecting capability self-checking and -repairing carry-lookahead adder

(CLA) is suggested in this project. An ability to self-check and identify faults is included into

the offered design. The repair process makes use of a hot-standby method with partial

reconfiguration, whereby a fully functional module is swapped out for the malfunctioning one

during runtime.

The suggested high-fault-coverage self-repairing adder has an area overhead of 161.5 percent,

which is 35.3 percent lower than the state-of-the-art partial self-repairing CLA and 35.3%

lower than the traditional CLA design.

INTRODUCTION

Carry-Lookahead Adders (CLAs) are among of the quickest adders utilised in digital systems.

Summation circuits for individual bits in CLA may "lookahead" for their incoming carry bits.

This allows the cascade of complete adders to operate independently of one another, without

blocking the execution of any adder in the chain. As a result, the speed is much enhanced, but

the hardware overhead is increased. Consequently, owing to their area overhead, typical self-

checking techniques such as double or triple modular redundancy are not practical for CLA.

The parity prediction system, which can identify errors in either an even or an odd amount of

bits, is the most popular method for creating self-checking CLA.

We provide a distributed fault detection capable self-checking and -repairing CLA in this

work.With the assumption that each module can only have one issue at a time, the suggested

architecture can identify and discover several faults concurrently. A hot standby method is used

to recover from faults by swapping out the defective module with a spare one. During the

replacement process, a new partial reconfiguration idea is used, where the circuits that generate

mailto:dsatyaraj@actechnology.in
mailto:chitra@actechnology.in
mailto:paprassath@actechnology.in
mailto:dr.vigneashl@actechnology.in

 ISSN NO: 9726-001X

Volume 8 Issue 01 2020

24

the internal carry bits have their functionality updated by the amended input values.

LITERATURE SURVEY

1-"An area-delay efficient multi-operand binary tree adder using modified carry select adder"

by M. Singh, M. Sharma, and A. K. Verma (2016):

The modified carry select adder (MCSA) is the foundational element of the area-delay efficient

MOBTA proposed in this article. At the same power consumption level, the suggested adder

is shown to have a reduced size and delay compared to other current MOBTAs.

2. the 2017 paper "Low power and high-speed multi-operand binary tree adder" by A. Mittal,

M. Gupta, and R. S. Anand:

By streamlining the carry propagation channel and cutting down on the number of logic gates

needed to construct the adder, this article suggests a low-power, high-speed MOBTA.

Compared to other MOBTAs on the market, the suggested adder outperforms them in terms of

speed and power consumption.

3. The article "Low-Power Multi-Operand Binary Tree Adder Design Based on Signed-Digit

Number System" was written by C. Li, Y. Li, and J. Li in 2019.

Based on the signed-digit number system (SDNS), this research suggests a low-power MOBTA

architecture. The suggested architecture uses a carry-save adder (CSA) as its foundation and

takes use of the SDNS representation's redundancy to lower power consumption.

Article 4 from the 2020 publication "Design of low-power multi-operand binary tree adder

using hybrid binary adder cells" by S. Patra, S. Pal, and D. K. Mandal:

An energy-efficient MOBTA architecture based on hybrid binary adder cells (HBACs) is

suggested in this work. By decreasing the amount of logic gates needed to implement the

ADDER and optimising the carry propagation method, the suggested architecture decreases

power consumption.

PROPOSED SYSTEM

PROPOSED SELF-REPAIRING CARRY LOOK-AHEAD ADDER DESIGN

A. CLA Topology And Operation

In CLA, all the internal carry bits are pre-computed in parallel to facilitate its operation.

Typically, a CLA consists of two main blocks.

The first block is the carry block (CBL), which generates the internal carry bits using carry

generator (CG) modules. The second block is the summation block (SBL) which is

 ISSN NO: 9726-001X

Volume 8 Issue 01 2020

25

responsible for generating the sum-bits using the sum generator (SG) modules, as shown

in below Fig.

Figure.2 CLA Block Diagram

The CBL is designed using the basic concept of carry propagation and generation. The

carry bit will be generated if both inputs are high (i.e., Gi = ai · bi), whereas the carry will

be propagated if either one or both input bits are high (i.e., Pi = ai ⊕ bi or Pi = ai + bi).

By combining these two operations, the ith carry bit can be computed. As inherent to the

CLA, each carry bit should be generated in parallel using independent circuitry.

 To calculate the sum-bits, which are Pi multiplied by Ci-1, this logic sharing is expanded even

more. The most difficult and space-intensive component of a CLA is the CBL, as each carry-

bit is created using its own separate circuitry. As the adder grows in size, its area overhead and

complexity skyrocket. A common solution to this problem is the CLA block architecture, which

involves repeatedly building adders for high input bit-width out of several small-size CLA

blocks. Consequently, as seen in Figure 1(a), the block size is directly proportional to the

amount of carry bits produced by each CBL. To minimise computational latency, the carry

block should be structured so that Cin is the last element required for processing, using the last

carry-out bit Cout created by each CBL as Cin for the next CBL. Immediate updating of the

output is possible upon receipt of Cin from the preceding block. Based on their corresponding

Boolean equations, the logic cell implementations in CG range from CG0 to CG3. On the other

hand, after the first CBL, the carry-bits will be generated with an extra delay of two logic gates,

X1 and X2, for every subsequent CBL

 ISSN NO: 9726-001X

Volume 8 Issue 01 2020

26

 Figure.2 CG module block diagram

B.Proposed Self-Checking CLA With Fault Localization

To address this issue, we propose a hardware-friendly self-checking and fault localization

approach for CLA, in which the ith sum-bit (Si) and carry-out bit (Ci) respectively generated

by the SBL and CBL, are compared with the ith input bits ai and bi to determine any

potential fault. Its operation can be summarized as: Si of the SBL and Ci of the CBL will

be equal to each other, if and only if the previous carry-bit Ci-1 of the CBL and the ith input

bits are all equal, that is:

If (ai == bi == Ci-1) then Si = Ci otherwise Si != Ci.

With the above conditional decision, an equality tester is required to check whether ai, bi and

Ci- 1 are equal and produce a comparison output Eqt(i), followed by a checker to determine

whether a fault happens.For an error-free adder, if E qt(i) = 1, Si and Ci must be equal;

otherwise, they must be complementary. The Eqt(i) bit can be computed using (6), and the

checker can be implemented.

 Figure.3 SG module block diagram

Proposed Self-Repairing Cla With Partial Reconfiguration

This understanding is impossible to get without making changes to the circuitry, since every

carry-bit has its own distinct equation. As shown in (4), the logic circuit that produces C2

necessitates the signals G0, G1, G2, P0, P1, and P2. If C1 fails, the circuitry for producing C2

should be adjusted by changing the values of G1, G2, P1, and P2 until C2 is the same as C1.

Only by modifying G2 and P2 can a basic shift operation be of any use. For adders with separate

carry circuits, like the CLA, the hot-standby technique becomes applicable after a partial

reconfiguration using the shift operation.

Figure shows a 4-bit self-repairing CLA that implements the suggested method. Given that ei

stands for the SG/CG pair's individual error, we can utilise it to set the defective module's input

 ISSN NO: 9726-001X

Volume 8 Issue 01 2020

27

bits to 1 and forward its input carry to the next SG. All subsequent following carry-bits will

keep their places unaltered as the logic cell of each CG has already been adjusted. In contrast,

the degree of the universal mistake, denoted as Ef, depends on each individual ei. All

subsequent SGs will have a high Ef, while all SGs before the defective one will have a low Ef.

You may control the shift operation of the input and output bits using it. The recovery

mechanism makes advantage of CGX and SGX in the spare modules.

 Figure.4 Block Diagram of Self-repairing carry look adder Schematic CG-X BLOCK

STIMULATION & SYNTHESIS RESULTS

 Figure.5 Simulation Wave Result figure.6 Schematic SG-Eq-Tester

BLOCK

 ISSN NO: 9726-001X

Volume 8 Issue 01 2020

28

Figure.7 Schematic self-repairing CLA

 Figure.8 Schematic SG BLOCK Figure.9 Schematic CG-0 BLOCK

 Area Report

 ADVANTAGES

Improved reliability: By using redundancy and fault tolerance techniques, the adder can

operate with a higher level of reliability, even in the presence of faults.

Reduced downtime: With the use of hot-standby topology, the adder can switch seamlessly

between the active and standby circuits, reducing downtime and improving overall system

availability.

Improved fault tolerance: The adder is designed to detect and isolate faults, allowing for

targeted replacement of faulty components without affecting the operation of the rest of the

circuit.

 ISSN NO: 9726-001X

Volume 8 Issue 01 2020

29

Increased accuracy: By ensuring that the adder operates correctly and reliably, the system can

produce accurate results, which is critical in applications that depend on precise .

APPLICATIONS

Medical devices: The adder can be used in medical devices such as MRI machines and other

imaging equipment, where accuracy and reliability are essential.

Industrial automation: The adder can be used in industrial automation systems, such as

robotic systems and process control systems, where high levels of accuracy and reliability are

required.

Financial applications: The adder can be used in financial applications, such as stock trading

and financial modelling, where accuracy and reliability are crucial.

Communications: The adder can be used in communication systems, such as wireless

networks and satellite communications, where reliable and accurate computations are required

for signal processing and data transmission.

CONCLUSION

A self-checking and fault-localization full adder, which compares the input and output bits to

find faults, is the basis of the proposed method. With the caveat that no one module should

have more than one problem at any given moment, the suggested 8-bit self-checking CLA can

identify and localise several errors simultaneously, although it takes up 20.6% more space than

traditional CLA.

The suggested self-checking method will not impact the time delay of traditional CLA as the

checker is not interfering with the calculation itself.

FUTURE SCOPE

Hardware security: The self-repairing approach can be extended to include hardware security

features, such as tamper detection and response. This could be particularly useful for

applications that require high levels of security, such as military and aerospace systems.

Internet of Things (IoT): The self-repairing approach could be applied to IoT devices, which

often have limited resources and require high reliability. By using partial reconfiguration, the

adder circuitry could be dynamically adjusted to optimize performance and reduce power

consumption.

 ISSN NO: 9726-001X

Volume 8 Issue 01 2020

30

Machine learning: The self-repairing approach could be used to develop more robust and

reliable machine learning algorithms. By incorporating fault localization and partial

reconfiguration techniques, machine learning systems could continue to operate even in the

presence of faults.

REFERENCES

1. F. Tang, A. Bermak, and Z. Gu, “Low power dynamic logic circuit design using a pseudo

dynamic buffer,” Integration, vol. 45, no. 4,pp. 395–404, 2012.

2. N. Mehdizadeh, M. Shokrolah-Shirazi, and S. G. Miremadi,“Analyzing fault effects in the

32- bit OpenRISC 1200 microprocessor,” in Proc. 3rd Int. Conf. Avail. Rel. Security, 2008, pp.

648– 652.

3. A. Meixner, M. E. Bauer, and D. J. Sorin, “Argus: Low-cost, comprehensive error detection

in simple cores,” in Proc. 40th Annu. IEEE/ACM Int. Symp. Microarchit., 2007, pp. 210–222.

4. H. G. Kang and T. Sung, “An analysis of safety-critical digital systems for risk-informed

design,” Rel. Eng. Syst. Safety, vol. 78, no. 3, pp. 307–314, 2002.

5. J. E. Smith and P. Lam, “A theory of totally self-checking system design,” IEEE Trans.

Comput., vol. C-32, no. 9, pp. 831–844, Sep. 1983.

6. A. G. Ganek and T. A. Corbi, “The dawning of the autonomic computing era,” IBM Syst. J.,

vol. 42, no. 1, pp. 5–18, 2003.00

